Date:March 3, 2015

QSFP28 100G to 2*QSFP28 50G DAC Cables

PS-QSFP28/QSFP28*2 Revision: A

QSFP28 100G to 2*QSFP28 50G High Speed Passive Direct Attached Copper Cable Product Specifications

Shenzhen Sinovo Telecom Co.,Ltd

版权所有 侵权必究

Revision

Date	Revision	Revision Description	Author
2015-03-03	А	First released	Fude Wang

This document contains confidential and proprietary information. Please do not duplicate if without the written permission.

PS-QSFP28/QSFP28*2 Revision: A

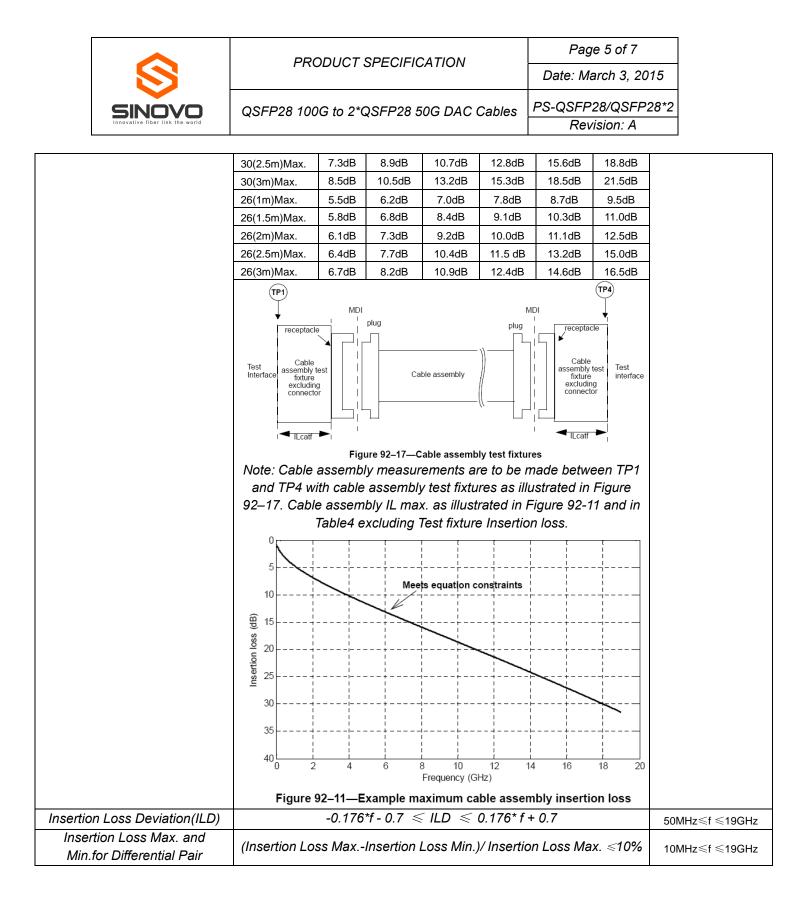
1 Product description

1.1 Meet SFF-8665, IEEE802.3bj and P802.3by specifications.

1.2 System requirement (Connector & Cable System)

ITEM	REQUIREMENT	TEST CONDITON
Data Rate per Channel	25.78125Gbps	Mate connector to edge card contacts, include host board launched.
Cable Length	0.5m, 1m, 2m, 3m, 5m	1
Pin Assignment	SFF-8665/8636 pin function definition.	/

1.3 PCB Material is M6 or higher, overall thickness is 1.0mm over pads.


2 Cable Specification

ITEM	REQUIREMENT				
Jacket Color	Black				
Jacket Material	PVC, FRNC, Meet RoHS and REACH requirement.				
Flame Retardant Grade	Meet UL CL2 a	and CSA(or cUL) FT4 upward flame retardant grade.			
Core	4 Pair				
Gauge	30AWG or 26AWG				
Shielding	Coverage≥85		e <i>≥</i> 85 <i>%.</i>		
Cable Diameter	FRNC 26AWG	FRNC 30AWG	PVC 26AWG	PVC 30AWG	
Ī	7.2 ±0.3mm	5.9±0.2mm	6.7±0.3 mm	5.4±0.2mm	
	500±25mm	500±25mm	500±25mm	500±25mm	
Ī	1000±30mm	1000±30mm	1000±30mm	1000±30mm	
Ī	1500±30mm	1500±30mm	1500±30mm	1500±30mm	
Cable Assembly Length	2000±30mm	2000±30mm	2000±30mm	2000±30mm	
-	2500±30mm	2500±30mm	2500±30mm	2500±30mm	
-	3000±30mm	3000±30mm	3000±30mm	3000±30mm	
-	5000±50mm		5000±50mm		

3 Electrical Performance

3.1 Signal integrity

ITEM		REQUIREMEN	NT						TEST CONDITION
CableImpedanceDifferentialCardImpedanceImpedanceCableTerminationImpedance		100-5/+10Ω					Rise time of 25ps(at the SMA) (20 % - 80 %).		
		100±10Ω							
			100±10Ω						
Differential(Input/Output)Return loss S _{DD11} /S _{DD22}		$\begin{cases} 16.5 \cdot \Re(f) \ge 0.05 \le f \le 4.1 \\ 10.00 14' Where 10.00 \le f \le 4.1 \\ 10.00 14' Where 10.00 \le f \le 4.1 \\ 10.00 14' Where 10.00 \le f \le 4.1 \\ 10.00 14' Where 10.00 \le f \le 4.1 \\ 10.00 14' 10.00 \le f \le 4.1 \\ 10.00 10.00 \le 4.1 \\ 10.00 10.00 \le f \le 4.1 \\ 10.00 10.00 \ 10.00 \le f \le 4.1 \\ 10.00 10.00 \$				10MHz≪f ≪19GHz			
Differential to common-mode (Input/Output)Return loss S _{CD11} /S _{CD22}		<pre> { 22-(20/25.78)f 0.01 ≤f≤12.89 { Return_loss(f) ≥</pre>				10MHz≪f ≪19GHz			
Common-mode to Common-mode (Input/Output)Return loss S _{CC11} /S _{CC22}		Return_loss	f	he commo	≥2dB Where is the freq on-mode to requency	uency in o commor	GHz	turn loss	10MHz≪f ≪19GHz
Differential Insertion Loss(S _{DD21} Max.)		F AWG 30(1m)Max. 30(1.5m)Max. 30(2m)Max.	(E 1.25G Hz 5.7dB 6.2dB 6.6dB	2.5GHz 6.6dB 7.0dB 7.9dB	5.0GHz 7.7dB 8.6dB 9.3dB	oss Max.) 7.0GHz 8.9dB 9.5dB 11.0dB	10Ghz 9.6dB 11.5dB 13.5dB	12.89Gh z 10.7dB 13.4dB 16.1dB	10MHz≤f ≤19GHz

	PRODUCT SPECIFICATION	Page 6 of 7 Date: March 3, 2015	
	FRODUCT SPECIFICATION		
	QSFP28 100G to 2*QSFP28 50G DAC Cables	PS-QSFP28/QSFP28*2 Revision: A	

Differential to common-mode Conversion Loss-Differential Insertion Loss(S _{CD21} -S _{DD21})	$Conversion \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 2$	10MHz≤f ≤19GHz
MDNEXT(multiple disturber near-end crosstalk)	≥26dB@12.89GHz	10MHz≤f ≤19GHz
Integrated Crosstalk Noise(ICN)	$\label{eq:ICN} \begin{array}{l} {\sf ICN} {\leqslant} {\sf 8mV}, {\sf 8} {\leqslant} \;\; {\sf IL} \; {\leqslant} \;\; 10.43 {\sf dB}; \\ {\sf ICN} {\leqslant} {\sf 12.1} {\sf -} 0.393^{*} {\sf IL} ({\sf mV}), \; 10.43 {<} \; {\sf IL} \; {\leqslant} \;\; 22.48 {\sf dB} \end{array}$	10MHz≤f ≤19GHz
AC Couple	100nF	Requirement of PRBS31 test.
Intra Skew	10ps/m	10MHz≪f ≪19GHz

3.2 Other Electrical Performance

ITEM	REQUIREMENT	TEST CONDITON
Low Level Contact Resistance	80milliohm Max. from initial.	EIA-364-23,apply a maximum voltage of 20mV and a current of 100mA.
Insulation Resistance	10Mohm Min.	EIA-364-21, AC 300V 1 minute.
Dielectric Withstanding Voltage	No disruptive discharge.	EIA-364-20,apply a voltage of 500VDC for 1 minute between adjacent terminals and between adjacent terminals and ground.

4 Cable Assembly Environmental Performance

ITEM	REQUIREMENT	TEST CONDITON	
Operating Temp. Range	-20°C to +75°C	Cable operating tem. range.	
Storage Temp. Range	-40°C to +85°C	Cable storage temp. range	
(in packed condition)	-40 C 10 +85 C	in packed condition.	
Thermal Cycling Non-Powered	Pass electrical tests per 3.1 after stressing.	EIA-364-32D, Method A, -25 to 90C, 100 cycles, 15 min. dwells	
Salt Spraying	48 hours salt spraying after shell corrosive area less than 5%.	EIA-364-26	

Page 7 of 7

Date: March 3, 2015

Mixed Flowing Gas	Pass electrical tests per 3.1 after stressing. (For connector only)	EIA-364-35 Class II,14 days.
Operating ambient RH - non condensing	5% to 85%	Cable Operating ambient RH - non condensing. range.

5 Mechanical Performance

ITEM	REQUIREMENT	TEST CONDITON
Vibration	No evidence of physical damage	Clamp & vibrate per EIA-364-28F,TC-VII, Test condition letter – D, 15 minutes in X, Y & Z axis.
Cable Flex	No evidence of physical damage	Twist cable 180° (±90° from nominal position) for 100 cycles at 30 cycles per minute with a 0.5kg load applied to the cable jacket. Clamp position: 300mm.
Cable Plug Retention in Cage	Pass electrical tests per 3.1 after stressing. 90N Min.	Cable plug is clamped with the cable hanging vertically. A 90N load is applied (gradually) to the cable jacket for a 1 minute duration. Force to be applied axially with no damage to cage. Per SFF 8661 Rev 2.1
Cable Retention in Plug	90N Min.	Cable plug is fixtured with the bulk cable hanging vertically. A 90N axial load is applied (gradually) to the cable jacket and held for 1 minute. Per EIA-364-38B
Mechanical Shock	No evidence of physical damage	Clamp and Shock per EIA-364-27C, TC-G,3 times in 6 directions, 100g, 6ms
Cable Plug Insertion	40N Max.	Per SFF8661 Rev 2.1
Cable Plug Extraction	30N Max.	Place axial load on de-latch to de-latch plug.Per SFF8661 Rev 2.1
Insertion/Removal tyCycles,Module/Cage	Proper function of latch / delatch after cycling	Insert and latch, then remove with delatch system. Per SFF8661 Rev 2.1 - 100 cycles
Latch Retention Force	90N Min. No evidence of physical damage	EIA-364-13
Durability	100 cycles,No evidence of physical damage	EIA-364-09, perform plug &unplug cycles:Plug and receptacle mate rate: 250times/hour. 100 times for QSFP28 module (CONNECTOR TO PCB)

End